Template-Directed Synthesis of Structurally Defined Branched Polymers

نویسندگان

  • Amanda B. Marciel
  • Danielle J. Mai
  • Charles M. Schroeder
چکیده

A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. In this work, we describe a hybrid synthetic strategy to produce structurally defined branched polymer architectures based on chemically modified DNA. Overall, this approach enables precise control over branch placement, grafting density, and chemical identity of side branches. We utilize a two-step scheme based on polymerase chain reaction (PCR) for site-specific incorporation of non-natural nucleotides along the main polymer backbone, followed by copper-free “click” chemistry for grafting side branches at specific locations. In this way, linear DNA backbones are first synthesized via PCR by utilizing the promiscuity of a high yield thermophilic DNA polymerase to incorporate nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups at precise locations along one strand of the DNA backbone. Following PCR, copper-free “click” chemistry is used to attach synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of precise polymer architectures, including three-arm stars, H-polymers, and graft block copolymers. Branched polymer architectures are characterized using polyacrylamide gel electrophoresis, denaturing high performance liquid chromatography (HPLC), and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. In a proof-of-principle demonstration, we synthesize miktoarm stars with AB2 structures via attachment of mPEG-azide branches (1 and 10 kDa) at precise locations along a DNA backbone, thereby expanding the chemical functionality of structurally defined DNA topologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Template-directed synthesis of metal-organic materials.

This tutorial review details the emergence of template-directed synthesis of metal-organic materials (MOMs) with emphasis upon reports of MOMs in which the template is retained, template@MOMs, and structurally characterized. Such MOMs enable analysis of the nature of the intermolecular interactions that occur between the template and the resulting host framework. The utilization of such underst...

متن کامل

Fabrication of Organic Solar Cells with Branched Cauliflower-Like Nano Structures as a Back Electrode Replicated from a Natural Template of Cicada Wing Patterns

Nanostructures of noble metal materials have been used in organic solar cells for enhancement of performance and light trapping. In this study, we have introduced branched silver cauliflower-like nanopatterns as sub-wavelength structured metal grating in organic solar cells. Self-assembled fabrication process of branched nanopatterns was carried out on a bio-template of cicada wing nanonipple a...

متن کامل

Synthesis of a nanoporous molecularly imprinted polymers for dibutyl Phthalate extracted from Trichoderma Harzianum

In this study, molecularly imprinted polymers were synthesized for dibutyl phthalate as a bioactive chemical compound with antifungal activity which produced by Trichoderma Harzianum (JX1738521). The molecularly imprinted polymers were synthesized via precipitation polymerization method from methacrylic acid, dibutyl phthalate and trimetylolpropantrimethacrylate as a functional monomer, templat...

متن کامل

Recent progress toward the templated synthesis and directed evolution of sequence-defined synthetic polymers.

Biological polymers such as nucleic acids and proteins are ubiquitous in living systems, but their ability to address problems beyond those found in nature is constrained by factors such as chemical or biological instability, limited building-block functionality, bioavailability, and immunogenicity. In principle, sequence-defined synthetic polymers based on nonbiological monomers and backbones ...

متن کامل

Use of Polymeric Supports for the Synthesis of Structurally Defined Oligomers

The aims of this project were firstly to develop a protocol for the iterative synthesis of polyethers on a polymeric support, using suitably protected monomers. The synthesis of cyclic ethers by an intramolecular cyclisation/cleavage from the polymeric support, utilising a sulfonyl chloride linker, was also desired. The final aim was to develop a method for reductive amination on a polymeric su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015